Sains Malaysiana 53(10)(2024): 3445-3454
http://doi.org/10.17576/jsm-2024-5310-17
Solubility and
Dissolutıon Improvement of Paramethoxycinnamic Acid (PMCA) Induced by
Cocrystal Formation using Caffeine as a Coformer
(Penambahbaikan Keterlarutan dan Pelarutan Asid
Parametoksisinamik (PMCA) Teraruh oleh Pembentukan Kokristal menggunakan Kafein
sebagai Koformer)
MELANNY IKA
SULISTYOWATY1, SUCİATİ FİTRİ1,
NİNİS YULİATİ1,2, TAHTA AMRİLLAH3,
CHE AZURAHANİM CHE ABDULLAH4 & DWİ SETYAWAN1,*
1Department
of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga,
Surabaya 60115, Indonesia
2Department of Pharmacy Technology, Faculty of Pharmacy, Institut Ilmu
Kesehatan Bhakti Wiyata Kediri, Kediri 64114, Indonesia
3Nanotechnology
Engineering, Faculty of Advanced Technology and Multidiscipline,
Universitas Airlangga, Surabaya 60115, Indonesia
4Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
Diserahkan: 21 Ogos 2023/Diterima: 13 Ogos 2024
Abstract
Para-methoxy cinnamic acid (pMCA) is a derivative
compound of ethyl p-methoxycinnamate that could be obtained in nature. pMCA has
excellent pharmacological properties. However, in their application as a drug,
pMCA has poor water solubility. In this present research, we try to increase
the water solubility of pMCA using the cocrystal formation (cocrystallization)
strategy. Here, we use caffeine as a coformer that can interact very well with
pMCA via non-covalent bonding and Van der Waals interaction to achieve
cocrystal formation. The cocrystal samples were successfully synthesized using
various synthesis techniques; physical mixture, solvent evaporation, and
microwave radiation methods. It shows that the solubility of the
samples synthesized using microwave-assisted and solvent evaporation increases
about 3.30 and 3.12 times, respectively, whereas the dissolution rate profile
increases 2.50 and 2.39 times, respectively, compared to pure APMS. Our findings explain the importance of the cocrystal formation
strategy to enhance the solubility of active material pMCA. This strategy can
also be used as a standard formulation of a new drug system with excellent
solubility and dissolution which is very important for the pharmaceutical industry.
Keywords: Caffeine; cocrystal; dissolution; drugs;
para-methoxy cinnamic acid; solubility
Abstrak
Asid sinamik para-metoksi (pMCA) ialah sebatian
terbitan etil p-metoksisinamat yang boleh didapati secara semula jadi. pMCA
mempunyai sifat farmakologi yang sangat baik seperti sifat analgesik,
anti-radang, anti-diabetes, anti-kanser, hepatopelindung dan neuropelindung.
Walau bagaimanapun, dalam penggunaannya sebagai ubat, pMCA mempunyai
keterlarutan air yang lemah. Manakala, keterlarutan dadah merupakan aspek
penting yang perlu dimiliki oleh sesuatu ubat untuk mencapai kesan yang
dikehendaki. Dalam penyelidikan ini, kami cuba meningkatkan keterlarutan air
pMCA menggunakan strategi pembentukan kokristal (penghabluran). Di sini, kami
menggunakan kafein sebagai koformer yang boleh berinteraksi dengan baik dengan
pMCA melalui ikatan bukan kovalen dan interaksi Van der Waals untuk mencapai
pembentukan kokristal. Sampel kokristal telah berjaya disintesis menggunakan
pelbagai teknik sintesis; campuran fizikal, penyejatan pelarut dan kaedah
sinaran gelombang mikro. Semua sampel kokristal mempunyai keterlarutan yang sangat
baik berbanding dengan keadaan murni atau pMCA tulen. Sampel yang disediakan
menggunakan sinaran gelombang mikro mempunyai keterlarutan yang paling tinggi
berbanding sampel yang disediakan menggunakan kaedah campuran fizikal dan
penyejatan pelarut. Penemuan kami menerangkan kepentingan strategi pembentukan
kokristal untuk meningkatkan keterlarutan bahan aktif pMCA. Strategi ini juga
boleh digunakan sebagai formulasi standard sistem ubat baharu dengan
keterlarutan dan pembubaran yang sangat baik yang sangat penting untuk industri
farmaseutikal.
Kata kunci: Asid sinamik para-metoksi; dadah;
kafein; keterlarutan; kokristal; pembubaran
RUJUKAN
Aghara,
M. & Dudhat, K. 2023. Solubility and dissolution enhancement of
luliconazole by a cocrystal engineering technique with different coformers. Journal
of Pharmaceutical Innovation 18: 1701-1712.
Ancheria,
R.K., Jain, S., Kumar, D., Soni, S.L. & Sharma, M. 2019. An overview of
pharmaceutical co-crystal. Asian Journal of Pharmaceutical Research and
Development 7(2): 39-46.
Babu,
N.J. & Nangia, A. 2011. Solubility advantage of amorphous drugs and
pharmaceutical cocrystals. Crystal Growth & Design 11(7): 2662-2679.
Biscaia,
I.F.B., Gomes, S.N., Bernardi, L.S. & Oliveira, P.R. 2021. Obtaining
cocrystals by reaction crystallization method: Pharmaceutical applications. Pharmaceutics 13(6): 898.
Buddhadev,
S.S. & Garala, K.C. 2021. Pharmaceutical cocrystals - A review. The 2nd
International Online Conference on Crystals. MDPI. hlm. 14.
Cao,
Y., Wan, X., Li, W., Liu, J., Liu, R. & Wu, S. 2022. Revealing the
dissolution behavior of trans-p-methoxycinnamic acid in 12 organic solvents by
parametric model and molecular simulation. The Journal of Chemical
Thermodynamics 166: 106683.
Cappelletto,
E., Rebuffi, L., Flor, A. & Scardi, P. 2017. Microstructural effects of
high-energy grinding on poorly soluble drugs: The case study of efavirenz. Powder
Diffraction 32(S1): S135-S140.
Cerreia
Vioglio, P., Chierotti, M.R. & Gobetto, R. 2017. Pharmaceutical aspects of
salt and cocrystal forms of APIs and characterization challenges. Advanced
Drug Delivery Reviews 117: 86-110.
Chaturvedi,
K., Shah, H.S., Nahar, K., Dave, R. & Morris, K.R. 2020. Contribution of
crystal lattice energy on the dissolution behavior of eutectic solid
dispersions. ACS Omega 5(17): 9690-9701.
Chaudhari,
S., Nikam, S.A., Khatri, N. & Wakde, S. 2018. Co-crystals: A review. Journal
of Drug Delivery and Therapeutics 8(6-s): 350-358.
Dwita,
L.P., Hikmawanti, N.P.E., Yeni & Supandi. 2021. Extract, fractions, and
ethyl-p-methoxycinnamate isolate from Kaempferia galanga elicit
anti-inflammatory activity by limiting leukotriene B4 (LTB4) production. Journal
of Traditional and Complementary Medicine 11(6): 563-569.
Gawande,
M.B., Shelke, S.N., Zboril, R. & Varma, R.S. 2014. Microwave-assisted
chemistry: Synthetic applications for rapid assembly of nanomaterials and
organics. Accounts of Chemical Research 47(4): 1338-1348.
Guo,
M., Sun, X., Chen, J. & Cai, T. 2021. Pharmaceutical cocrystals: A review
of preparations, physicochemical properties and applications. Acta
Pharmaceutica Sinica B 11(8): 2537-2564.
Guzmán,
H.R., Tawa, M., Zhang, Z., Ratanabanangkoon, P., Shaw, P., Gardner, C.R., Chen,
H., Moreau, J., Almarsson, Ö. & Remenar, J.F. 2007. Combined use of
crystalline salt forms and precipitation ınhibitors to ımprove oral
absorption of celecoxib from solid oral formulations. Journal of
Pharmaceutical Sciences 96(10): 2686-2702.
Isadiartuti,
D., Rosita, N., Ekowati, J., Syahrani, A., Ariyani, T. & Rifqi, M.A. 2021.
The thermodynamic study of p -methoxycinnamic acid inclusion complex
formation, using β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Journal
of Basic and Clinical Physiology and Pharmacology 32(4): 663-667.
Kakran,
M., Sahoo, N.G. & Li, L. 2011. Dissolution enhancement of quercetin through
nanofabrication, complexation, and solid dispersion. Colloids and Surfaces
B: Biointerfaces 88(1): 121-130.
Karagianni,
A., Malamatari, M. & Kachrimanis, K. 2018. Pharmaceutical cocrystals: New
solid phase modification approaches for the formulation of APIs. Pharmaceutics 10(1): 18.
Karimi-Jafari,
M., Padrela, L., Walker, G.M. & Croker, D.M. 2018. Creating cocrystals: A
review of pharmaceutical cocrystal preparation routes and applications. Crystal
Growth & Design 18(10): 6370-6387.
Khadka,
P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G. & Lee,
J. 2014. Pharmaceutical particle technologies: An approach to improve drug
solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical
Sciences 9(6): 304-316.
Korotkova,
E.I. & Kratochvíl, B. 2014. Pharmaceutical cocrystals. Procedia
Chemistry 10: 473-476.
Li, Z.
& Matzger, A.J. 2016. Influence of coformer stoichiometric ratio on
pharmaceutical cocrystal dissolution: Three cocrystals of
carbamazepine/4-aminobenzoic acid. Molecular Pharmaceutics 13(3):
990-995.
Mehta,
J., Borkhataria, C., Patel, A., Manek, R., Patel, N., Sakhiya, D.,
Shanishchara, K. & Mistry, B. 2023. Para-hydroxy benzoic acid coformer
enable enhanced solubility, dissolution, and antifungal activity of
ketoconazole cocrystals. Journal of Pharmaceutical Innovation 18:
1602-1615.
Mote,
V., Purushotham, Y. & Dole, B. 2012. Williamson-Hall analysis in estimation
of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical
and Applied Physics 6(1): 6.
Padrela,
L., Rodrigues, M.A., Duarte, A., Dias, A.M.A., Braga, M.E.M. & de Sousa,
H.C. 2018. Supercritical carbon dioxide-based technologies for the production
of drug nanoparticles/nanocrystals - A comprehensive review. Advanced Drug
Delivery Reviews 131: 22-78.
Pagire,
S., Korde, S., Ambardekar, R., Deshmukh, S., Dash, R.C., Dhumal, R. &
Paradkar, A. 2013. Microwave assisted synthesis of caffeine/maleic acid
co-crystals: The role of the dielectric and physicochemical properties of the
solvent. CrystEngComm 15(18): 3705-3710.
Panzade,
P.S., Shendarkar, G.R. & Kulkarni, D.A. 2022. Hot melt extrusion: An
emerging green technique for the synthesis of high-quality pharmaceutical
cocrystals. Journal of Pharmaceutical Innovation 17(2): 283-293.
Pawar,
N., Saha, A., Nandan, N. & Parambil, J. 2021. Solution cocrystallization: A
scalable approach for cocrystal production. Crystals 11(3): 303.
Płowuszyńska,
A. & Gliszczyńska, A. 2021. Recent developments in therapeutic and
nutraceutical applications of p-methoxycinnamic acid from plant origin. Molecules 26(13): 3827.
Qin,
W., Nagase, T., Umakoshi, Y. & Szpunar, J.A. 2008. Relationship between
microstrain and lattice parameter change in nanocrystalline materials. Philosophical
Magazine Letters 88(3): 169-179.
Ren,
S., Liu, M., Hong, C., Li, G., Sun, J., Wang, J., Zhang, L. & Xie, Y. 2019.
The effects of pH, surfactant, ion concentration, coformer, and molecular
arrangement on the solubility behavior of myricetin cocrystals. Acta
Pharmaceutica Sinica B 9(1): 59-73.
Sanphui,
P., Kumar, S.S. & Nangia, A. 2012. Pharmaceutical cocrystals of
niclosamide. Crystal Growth & Design 12(9): 4588-4599.
Sathisaran,
I. & Dalvi, S. 2018. Engineering cocrystals of poorly water-soluble drugs
to enhance dissolution in aqueous medium. Pharmaceutics 10(3): 108.
Savjani,
K.T., Gajjar, A.K. & Savjani, J.K. 2012. Drug solubility: Importance and
enhancement techniques. ISRN Pharmaceutics 2012: 195727.
Setyawan,
D., Oktavia, I.P., Farizka, R. & Sari, R. 2017. Physicochemical
characterization and ın vitro dissolution test of
quercetin-succinic acid co-crystals prepared using solvent evaporation. Turkish
Journal of Pharmaceutical Sciences 14(3): 280-284.
Setyawan,
D., Permata, S.A., Zainul, A. & Lestari, M.L.A.D. 2018. Improvement in
vitro dissolution rate of quercetin using cocrystallization of
quercetin-malonic acid. Indonesian Journal of Chemistry 18(3): 531.
Sıdır,
İ. & Sıdır, Y.G. 2018. Investigation on the interactions of
E -4-methoxycinnamic acid with solvent: Solvatochromism, electric dipole moment
and pH effect. Journal of Molecular Liquids 249: 1161-1171.
Sopyan,
I., Alvin, B., Insan Sunan, K.S., Cikra Ikhda, H.S. & Sandra, M. 2021.
Systematic review: Cocrystal as efforts to improve physicochemical and
bioavailability properties of oral solid dosage form. International Journal
of Applied Pharmaceutics 13(1): 43-52.
Syed,
T.A., Gaikar, V.G. & Mukherjee, S. 2019. Stability of co‐crystals of
caffeine with gallic acid in presence of coformers. Journal of Food Process
Engineering 42(4): e13066.
Tambosi,
G., Coelho, P.F., Luciano, S., Lenschow, I.C.S., Zétola, M., Stulzer, H.K.
& Pezzini, B.R. 2018. Challenges to improve the biopharmaceutical
properties of poorly water-soluble drugs and the application of the solid
dispersion technology. Matéria (Rio de Janeiro) 23(4).
http://dx.doi.org/10.1590/s1517-707620180004.0558
Thakuria,
R., Delori, A., Jones, W., Lipert, M.P., Roy, L. & Rodríguez-Hornedo, N.
2013. Pharmaceutical cocrystals and poorly soluble drugs. International
Journal of Pharmaceutics 453(1): 101-125.
Veverka,
M., Dubaj, T., Gallovič, J., Jorík, V., Veverková, E., Danihelová, M.
& Šimon, P. 2015. Cocrystals of quercetin: Synthesis, characterization, and
screening of biological activity. Monatshefte für Chemie - Chemical Monthly 146(1): 99-109.
Yadav,
D., Savjani, J., Savjani, K. & Shah, H. 2023. Exploring potential coformer
screening techniques based on experimental and virtual strategies in the
manufacturing of pharmaceutical cocrystal of efavirenz. Journal of
Pharmaceutical Innovation 18: 1128-1144.
Zhang,
Z., Li, D., Luo, C., Huang, C., Qiu, R., Deng, Z. & Zhang, H. 2019.
Cocrystals of natural products: Improving the dissolution performance of
flavonoids using betaine. Crystal Growth & Design 19(7): 3851-3859.
*Pengarang
untuk surat-menyurat; email: dwisetyawan-90@ff.unair.ac.id
|