Sains Malaysiana 53(10)(2024): 3445-3454

http://doi.org/10.17576/jsm-2024-5310-17

 

Solubility and Dissolutıon Improvement of Paramethoxycinnamic Acid (PMCA) Induced by Cocrystal Formation using Caffeine as a Coformer

(Penambahbaikan Keterlarutan dan Pelarutan Asid Parametoksisinamik (PMCA) Teraruh oleh Pembentukan Kokristal menggunakan Kafein sebagai Koformer)

 

MELANNY IKA SULISTYOWATY1, SUCİATİ FİTRİ1, NİNİS YULİATİ1,2, TAHTA AMRİLLAH3, CHE AZURAHANİM CHE ABDULLAH4 & DWİ SETYAWAN1,*

 

1Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia

2Department of Pharmacy Technology, Faculty of Pharmacy, Institut Ilmu Kesehatan Bhakti Wiyata Kediri, Kediri 64114, Indonesia

3Nanotechnology Engineering, Faculty of Advanced Technology and Multidiscipline, Universitas Airlangga, Surabaya 60115, Indonesia

4Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia

 

Diserahkan: 21 Ogos 2023/Diterima: 13 Ogos 2024

 

Abstract

Para-methoxy cinnamic acid (pMCA) is a derivative compound of ethyl p-methoxycinnamate that could be obtained in nature. pMCA has excellent pharmacological properties. However, in their application as a drug, pMCA has poor water solubility. In this present research, we try to increase the water solubility of pMCA using the cocrystal formation (cocrystallization) strategy. Here, we use caffeine as a coformer that can interact very well with pMCA via non-covalent bonding and Van der Waals interaction to achieve cocrystal formation. The cocrystal samples were successfully synthesized using various synthesis techniques; physical mixture, solvent evaporation, and microwave radiation methods. It shows that the solubility of the samples synthesized using microwave-assisted and solvent evaporation increases about 3.30 and 3.12 times, respectively, whereas the dissolution rate profile increases 2.50 and 2.39 times, respectively, compared to pure APMS. Our findings explain the importance of the cocrystal formation strategy to enhance the solubility of active material pMCA. This strategy can also be used as a standard formulation of a new drug system with excellent solubility and dissolution which is very important for the pharmaceutical industry.

 

Keywords: Caffeine; cocrystal; dissolution; drugs; para-methoxy cinnamic acid; solubility

 

Abstrak

Asid sinamik para-metoksi (pMCA) ialah sebatian terbitan etil p-metoksisinamat yang boleh didapati secara semula jadi. pMCA mempunyai sifat farmakologi yang sangat baik seperti sifat analgesik, anti-radang, anti-diabetes, anti-kanser, hepatopelindung dan neuropelindung. Walau bagaimanapun, dalam penggunaannya sebagai ubat, pMCA mempunyai keterlarutan air yang lemah. Manakala, keterlarutan dadah merupakan aspek penting yang perlu dimiliki oleh sesuatu ubat untuk mencapai kesan yang dikehendaki. Dalam penyelidikan ini, kami cuba meningkatkan keterlarutan air pMCA menggunakan strategi pembentukan kokristal (penghabluran). Di sini, kami menggunakan kafein sebagai koformer yang boleh berinteraksi dengan baik dengan pMCA melalui ikatan bukan kovalen dan interaksi Van der Waals untuk mencapai pembentukan kokristal. Sampel kokristal telah berjaya disintesis menggunakan pelbagai teknik sintesis; campuran fizikal, penyejatan pelarut dan kaedah sinaran gelombang mikro. Semua sampel kokristal mempunyai keterlarutan yang sangat baik berbanding dengan keadaan murni atau pMCA tulen. Sampel yang disediakan menggunakan sinaran gelombang mikro mempunyai keterlarutan yang paling tinggi berbanding sampel yang disediakan menggunakan kaedah campuran fizikal dan penyejatan pelarut. Penemuan kami menerangkan kepentingan strategi pembentukan kokristal untuk meningkatkan keterlarutan bahan aktif pMCA. Strategi ini juga boleh digunakan sebagai formulasi standard sistem ubat baharu dengan keterlarutan dan pembubaran yang sangat baik yang sangat penting untuk industri farmaseutikal.

 

Kata kunci: Asid sinamik para-metoksi; dadah; kafein; keterlarutan; kokristal; pembubaran

 

RUJUKAN

Aghara, M. & Dudhat, K. 2023. Solubility and dissolution enhancement of luliconazole by a cocrystal engineering technique with different coformers. Journal of Pharmaceutical Innovation 18: 1701-1712.

Ancheria, R.K., Jain, S., Kumar, D., Soni, S.L. & Sharma, M. 2019. An overview of pharmaceutical co-crystal. Asian Journal of Pharmaceutical Research and Development 7(2): 39-46.

Babu, N.J. & Nangia, A. 2011. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Crystal Growth & Design 11(7): 2662-2679.

Biscaia, I.F.B., Gomes, S.N., Bernardi, L.S. & Oliveira, P.R. 2021. Obtaining cocrystals by reaction crystallization method: Pharmaceutical applications. Pharmaceutics 13(6): 898.

Buddhadev, S.S. & Garala, K.C. 2021. Pharmaceutical cocrystals - A review. The 2nd International Online Conference on Crystals. MDPI. hlm. 14.

Cao, Y., Wan, X., Li, W., Liu, J., Liu, R. & Wu, S. 2022. Revealing the dissolution behavior of trans-p-methoxycinnamic acid in 12 organic solvents by parametric model and molecular simulation. The Journal of Chemical Thermodynamics 166: 106683.

Cappelletto, E., Rebuffi, L., Flor, A. & Scardi, P. 2017. Microstructural effects of high-energy grinding on poorly soluble drugs: The case study of efavirenz. Powder Diffraction 32(S1): S135-S140.

Cerreia Vioglio, P., Chierotti, M.R. & Gobetto, R. 2017. Pharmaceutical aspects of salt and cocrystal forms of APIs and characterization challenges. Advanced Drug Delivery Reviews 117: 86-110.

Chaturvedi, K., Shah, H.S., Nahar, K., Dave, R. & Morris, K.R. 2020. Contribution of crystal lattice energy on the dissolution behavior of eutectic solid dispersions. ACS Omega 5(17): 9690-9701.

Chaudhari, S., Nikam, S.A., Khatri, N. & Wakde, S. 2018. Co-crystals: A review. Journal of Drug Delivery and Therapeutics 8(6-s): 350-358.

Dwita, L.P., Hikmawanti, N.P.E., Yeni & Supandi. 2021. Extract, fractions, and ethyl-p-methoxycinnamate isolate from Kaempferia galanga elicit anti-inflammatory activity by limiting leukotriene B4 (LTB4) production. Journal of Traditional and Complementary Medicine 11(6): 563-569.

Gawande, M.B., Shelke, S.N., Zboril, R. & Varma, R.S. 2014. Microwave-assisted chemistry: Synthetic applications for rapid assembly of nanomaterials and organics. Accounts of Chemical Research 47(4): 1338-1348.

Guo, M., Sun, X., Chen, J. & Cai, T. 2021. Pharmaceutical cocrystals: A review of preparations, physicochemical properties and applications. Acta Pharmaceutica Sinica B 11(8): 2537-2564.

Guzmán, H.R., Tawa, M., Zhang, Z., Ratanabanangkoon, P., Shaw, P., Gardner, C.R., Chen, H., Moreau, J., Almarsson, Ö. & Remenar, J.F. 2007. Combined use of crystalline salt forms and precipitation ınhibitors to ımprove oral absorption of celecoxib from solid oral formulations. Journal of Pharmaceutical Sciences 96(10): 2686-2702.

Isadiartuti, D., Rosita, N., Ekowati, J., Syahrani, A., Ariyani, T. & Rifqi, M.A. 2021. The thermodynamic study of p -methoxycinnamic acid inclusion complex formation, using β-cyclodextrin and hydroxypropyl-β-cyclodextrin. Journal of Basic and Clinical Physiology and Pharmacology 32(4): 663-667.

Kakran, M., Sahoo, N.G. & Li, L. 2011. Dissolution enhancement of quercetin through nanofabrication, complexation, and solid dispersion. Colloids and Surfaces B: Biointerfaces 88(1): 121-130.

Karagianni, A., Malamatari, M. & Kachrimanis, K. 2018. Pharmaceutical cocrystals: New solid phase modification approaches for the formulation of APIs. Pharmaceutics 10(1): 18.

Karimi-Jafari, M., Padrela, L., Walker, G.M. & Croker, D.M. 2018. Creating cocrystals: A review of pharmaceutical cocrystal preparation routes and applications. Crystal Growth & Design 18(10): 6370-6387.

Khadka, P., Ro, J., Kim, H., Kim, I., Kim, J.T., Kim, H., Cho, J.M., Yun, G. & Lee, J. 2014. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian Journal of Pharmaceutical Sciences 9(6): 304-316.

Korotkova, E.I. & Kratochvíl, B. 2014. Pharmaceutical cocrystals. Procedia Chemistry 10: 473-476.

Li, Z. & Matzger, A.J. 2016. Influence of coformer stoichiometric ratio on pharmaceutical cocrystal dissolution: Three cocrystals of carbamazepine/4-aminobenzoic acid. Molecular Pharmaceutics 13(3): 990-995.

Mehta, J., Borkhataria, C., Patel, A., Manek, R., Patel, N., Sakhiya, D., Shanishchara, K. & Mistry, B. 2023. Para-hydroxy benzoic acid coformer enable enhanced solubility, dissolution, and antifungal activity of ketoconazole cocrystals. Journal of Pharmaceutical Innovation 18: 1602-1615.

Mote, V., Purushotham, Y. & Dole, B. 2012. Williamson-Hall analysis in estimation of lattice strain in nanometer-sized ZnO particles. Journal of Theoretical and Applied Physics 6(1): 6.

Padrela, L., Rodrigues, M.A., Duarte, A., Dias, A.M.A., Braga, M.E.M. & de Sousa, H.C. 2018. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals - A comprehensive review. Advanced Drug Delivery Reviews 131: 22-78.

Pagire, S., Korde, S., Ambardekar, R., Deshmukh, S., Dash, R.C., Dhumal, R. & Paradkar, A. 2013. Microwave assisted synthesis of caffeine/maleic acid co-crystals: The role of the dielectric and physicochemical properties of the solvent. CrystEngComm 15(18): 3705-3710.

Panzade, P.S., Shendarkar, G.R. & Kulkarni, D.A. 2022. Hot melt extrusion: An emerging green technique for the synthesis of high-quality pharmaceutical cocrystals. Journal of Pharmaceutical Innovation 17(2): 283-293.

Pawar, N., Saha, A., Nandan, N. & Parambil, J. 2021. Solution cocrystallization: A scalable approach for cocrystal production. Crystals 11(3): 303.

Płowuszyńska, A. & Gliszczyńska, A. 2021. Recent developments in therapeutic and nutraceutical applications of p-methoxycinnamic acid from plant origin. Molecules 26(13): 3827.

Qin, W., Nagase, T., Umakoshi, Y. & Szpunar, J.A. 2008. Relationship between microstrain and lattice parameter change in nanocrystalline materials. Philosophical Magazine Letters 88(3): 169-179.

Ren, S., Liu, M., Hong, C., Li, G., Sun, J., Wang, J., Zhang, L. & Xie, Y. 2019. The effects of pH, surfactant, ion concentration, coformer, and molecular arrangement on the solubility behavior of myricetin cocrystals. Acta Pharmaceutica Sinica B 9(1): 59-73.

Sanphui, P., Kumar, S.S. & Nangia, A. 2012. Pharmaceutical cocrystals of niclosamide. Crystal Growth & Design 12(9): 4588-4599.

Sathisaran, I. & Dalvi, S. 2018. Engineering cocrystals of poorly water-soluble drugs to enhance dissolution in aqueous medium. Pharmaceutics 10(3): 108.

Savjani, K.T., Gajjar, A.K. & Savjani, J.K. 2012. Drug solubility: Importance and enhancement techniques. ISRN Pharmaceutics 2012: 195727.

Setyawan, D., Oktavia, I.P., Farizka, R. & Sari, R. 2017. Physicochemical characterization and ın vitro dissolution test of quercetin-succinic acid co-crystals prepared using solvent evaporation. Turkish Journal of Pharmaceutical Sciences 14(3): 280-284.

Setyawan, D., Permata, S.A., Zainul, A. & Lestari, M.L.A.D. 2018. Improvement in vitro dissolution rate of quercetin using cocrystallization of quercetin-malonic acid. Indonesian Journal of Chemistry 18(3): 531.

Sıdır, İ. & Sıdır, Y.G. 2018. Investigation on the interactions of E -4-methoxycinnamic acid with solvent: Solvatochromism, electric dipole moment and pH effect. Journal of Molecular Liquids 249: 1161-1171.

Sopyan, I., Alvin, B., Insan Sunan, K.S., Cikra Ikhda, H.S. & Sandra, M. 2021. Systematic review: Cocrystal as efforts to improve physicochemical and bioavailability properties of oral solid dosage form. International Journal of Applied Pharmaceutics 13(1): 43-52.

Syed, T.A., Gaikar, V.G. & Mukherjee, S. 2019. Stability of co‐crystals of caffeine with gallic acid in presence of coformers. Journal of Food Process Engineering 42(4): e13066.

Tambosi, G., Coelho, P.F., Luciano, S., Lenschow, I.C.S., Zétola, M., Stulzer, H.K. & Pezzini, B.R. 2018. Challenges to improve the biopharmaceutical properties of poorly water-soluble drugs and the application of the solid dispersion technology. Matéria (Rio de Janeiro) 23(4). http://dx.doi.org/10.1590/s1517-707620180004.0558

Thakuria, R., Delori, A., Jones, W., Lipert, M.P., Roy, L. & Rodríguez-Hornedo, N. 2013. Pharmaceutical cocrystals and poorly soluble drugs. International Journal of Pharmaceutics 453(1): 101-125.

Veverka, M., Dubaj, T., Gallovič, J., Jorík, V., Veverková, E., Danihelová, M. & Šimon, P. 2015. Cocrystals of quercetin: Synthesis, characterization, and screening of biological activity. Monatshefte für Chemie - Chemical Monthly 146(1): 99-109.

Yadav, D., Savjani, J., Savjani, K. & Shah, H. 2023. Exploring potential coformer screening techniques based on experimental and virtual strategies in the manufacturing of pharmaceutical cocrystal of efavirenz. Journal of Pharmaceutical Innovation 18: 1128-1144.

Zhang, Z., Li, D., Luo, C., Huang, C., Qiu, R., Deng, Z. & Zhang, H. 2019. Cocrystals of natural products: Improving the dissolution performance of flavonoids using betaine. Crystal Growth & Design 19(7): 3851-3859.

 

*Pengarang untuk surat-menyurat; email: dwisetyawan-90@ff.unair.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

sebelumnya